If a+b+c=0 and a2+b2+c2=1 , then the value ofa4+b4+c4 is?

a^4b-a^4c-b^4a+b^4c+c^4a-c^4b/(a-b)(a-c)(b-c)

This deals with adding, subtracting and finding the least common multiple.


(a^5b-a^5c-a^4b^2+a^4bc-a^2b^4+a^2c^4+ab^5+ab^4c-ab^2c^4+abc^5-abc^4-b^5c+b^2c^5-bc^6)/(a-b)

Step by Step Solution

*

Step 1 :

b Simplify ————— a - bEquation at the end of step 1 : b ((((((a4)•b)-((a4)•c))-((b4)•a))+((b4)•c))+((c4)•a))-((((c4)•———)•(a-c))•(b-c)) a-b

Step 2 :

Equation at the end of step 2 : bc4 ((((((a4)•b)-((a4)•c))-((b4)•a))+((b4)•c))+((c4)•a))-((———•(a-c))•(b-c)) a-b

Step 3 :

Equation at the kết thúc of step 3 : bc4•(a-c) ((((((a4)•b)-((a4)•c))-((b4)•a))+((b4)•c))+((c4)•a))-(—————————•(b-c)) a-b

Step 4 :

Equation at the kết thúc of step 4 : bc4•(a-c)•(b-c) ((((((a4)•b)-((a4)•c))-((b4)•a))+((b4)•c))+((c4)•a))-——————————————— a-b

Step 5 :

Rewriting the whole as an Equivalent Fraction :5.1Subtracting a fraction from a whole Rewrite the whole as a fraction using (a-b) as the denominator :

a4b - a4c - ab4 + ac4 + b4c (a4b - a4c - ab4 + ac4 + b4c) • (a - b) a4b - a4c - ab4 + ac4 + b4c = ——————————————————————————— = ——————————————————————————————————————— 1 (a - b) Equivalent fraction : The fraction thus generated looks different but has the same value as the whole Common denominator : The equivalent fraction & the other fraction involved in the calculation tóm tắt the same denominator

Adding fractions that have sầu a comtháng denominator :5.2 Adding up the two equivalent fractions Add the two equivalent fractions which now have a comtháng denominatorCombine the numerators together, put the sum or difference over the comtháng denominator then reduce to lớn lowest terms if possible:

(a4b-a4c-ab4+ac4+b4c) • (a-b) - (bc4 • (a-c) • (b-c)) a5b-a5c-a4b2+a4bc-a2b4+a2c4+ab5+ab4c-ab2c4+abc5-abc4-b5c+b2c5-bc6 ————————————————————————————————————————————————————— = ————————————————————————————————————————————————————————————————— 1 • (a-b) 1 • (a-b)

Final result :

a5b-a5c-a4b2+a4bc-a2b4+a2c4+ab5+ab4c-ab2c4+abc5-abc4-b5c+b2c5-bc6 ————————————————————————————————————————————————————————————————— a-b