Home / GIÁO DỤC / tính các giá trị lượng giác của góc alphaTính các giá trị lượng giác của góc alpha02/01/20221. Định nghĩa : Với mỗi góc a (0° ≤ a ≤ 180°) ta xác định được một điểm M trên nửa đường tròn đơn vị (h. 2.1) sao cho = a. Giả sử điểm M có toạ độ là M(). Khi đó :Tung độ của điểm M gọi là sin của góc α và được kí hiệu là sinα =.Hoành độ của điểm M gọi là côsin của góc α và được kí hiệu là cos α = 2. Các hệ thức lượng giáca) Giá trị lượng giác của hai góc bù nhausin α = sin (180° – α)cos α= -cos (180° – α)tan α = -tan (180° – α)cot α = -cot (180° – α).Bạn đang xem: Tính các giá trị lượng giác của góc alphab) Các hệ thức lượng giác cơ bảnTừ đinh nghĩa giá trị lượng giác của góc α ta suy ra các hệ thức :4. Góc giữa hai vectơCho hai vectơ và đều khác vectơ . Từ một điểm O bất kì ta vẽ = và = . Khi đó góc với số đo từ 0° đến 180° được gọi là góc giữa hai vectơ và (h.2.2) và kí hiệu là {, ).B. DẠNG TOÁN CƠ BẢNVấn đề 1Tính giá trị lượng giác của một số góc đặc biệt.1. Phương phápDựa vào định nghĩa, tìm tung độ và hoành độ của điểm M trên nửa đường tròn đơn vị với góc = α và từ đó ta có các giá tri=ị lượng giác :Dựa vào tính chất : Hai góc bù nhau có sin bằng nhau và có côsin, tang, côtang đối nhau.2. Các ví dụVí dụ 1: Cho góc α = 135º. Hãy tính sinα, cosα, tanα và cotα.GIẢIDo đó cot 135º = -1.Ví dụ 2. . Cho tam giác cân ABC có = = 15°. Hãy tính các giá trị lượng giác của góc A.GIẢITa có = 180º – ( + ) = 180º – 30º = 150º.Vậy sin A = sin (180º – 150º) = sin 30º = 1/2;Do đó cotA = –Ví dụ 3. Cho tam giác ABC. Chứng minh rằng:GIẢIVì 180º – = + nên ta có:a) sin A = sin(180º – A) sin (B + C);Vấn đề 2Cho biết một giá trị lượng giác của góc α, tìm cốc giá trị lượng giác còn lại của α1. Phương phápSử dụng định nghĩa giá trị lượng giác của góc α và các hệ thức cơ bản liên hệ giữa các giá trị đó như :2. Các ví dụVí dụ 1. Cho biết cos α = -2/3, hãy tính sin α và tan α.GIẢIVì cos α 0 và tan α Vì α + α = 1 nên thay giá trị cos α = -2/3 vào ta có:Ví dụ 2. Cho góc α, biết 0º Tính sin α và cos α.Xem thêm: GIẢIVí dụ 3. Cho góc α, biết cos α = 3/5. Hãy tính sin α, tan α, cot α.GIẢIVí dụ 4. Cho góc α biết tanα = -2. Tính cos α và sin α.Vì tan α = -2 VìnênVậy cos α = -1/.Mặt khácNhận xét. Có thể dùng hệ thức để tính như sau:Vấn đề 3.Cho biết một giả trị lượng giác của góc a, hãỵ xác định góc a đó1. Phương phápSử dụng định nghĩa giá trị lượng giác của góc α để dựng góc α và trong một số trường hợp có thể sử dụng tỉ số lượng giác của góc nhọn để dựng góc α.Tập sử dụng máy tính bỏ túi để xác định góc α.2. Các ví dụ.Cách 1. Trên trục Oy của nửa đườngtròn đơn vị ta lấy điểm I = (0; ) vàqua đó vẽ đường thẳng d song song với trục Ox (h.2.3).Đường thẳng này cắt nửa đường tròn đơn vị tại hai điểm M và N trong đó là góc tù và là góc nhọn. Ta xác định được góc α có .Cách 2. Ta dựng tam giác ABC vuông tại A, có AB = 3,BC = 5 (h.2.4).Ta có a = vì sin = .Cách 3. Dùng máy tính bỏ túi (Casio fx-500MS).Chọn đơn vị đo : Sau khi mở máy ấn phím MODE nhiều lần để màn hình hiện lên dòng chữ ứng với các số sau đây :